
Comparison of FFT Fingerprint Filtering

Methods for Neural Network Classification

C.l. Watson
G.T. Candela
P.J. Grother

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Advanced Systems Division

Gaithersburg, MD 20899

NIST

NISTIR 5493

Comparison of FFT Fingerprint Filtering

Methods for Neural Network Classification

C.l. Watson
G.T. Candela
P.J. Grother

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Advanced Systems Division

Gaithersburg, MD 20899

September 1994

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

Contents

Abstract

1 Introduction 1

2 Experimental Fingerprint Database 6

3 Image Segmenting 7

4 Fingerprint Image Enhancement 12

4.1 Localized FFT Fingerprint Filter 12

4.2 Directional FFT Filter 14

5 Feature Extraction 18

6 PNN Classifier 21

7 Method of Rejection 23

8 Results 23

8.1 Accuracy 23

8.2 Speed 23

9 Conclusions 27

List of Figures

Figure la: Example of arch pattern 1

Figure lb: Example of left loop pattern 2

Figure lc: Example of right loop pattern 2

Figure Id: Example of tented arch pattern 3

Figure le: Example of whorl pattern 3

Figure 2: Example of a core location found by registration 5

Figure 3: Original raster of image to be segmented 8

Figure 4a: Foreground of Figure 3 9

Figure 4b: Foreground of Figure 3, “cleaned” and centered 9

Figure 4c: Edge detection ofFigure 3 10

Figure 4d: Segmented image of Figure 3 11

Figure 5: Original image f0000048.pct 12

Figure 6: Image filtered using localized FFT filter 14

Figure 7a: Orientation images for direction filter version 1 15

Figure 7b: Image filtered using version 1 of the directional filter (ten orientation masks). ... 16

Figure 8a: Orientation images for direction filter version2 16

Figure 8b: Image filtered using version 2 of the directional filter (six orientation masks). ... 17

Figure 9: Equally spaced direction vectors of non-filtered image 19

Figure 10: Registered equally spaced direction vectors of non-filtered image 19

Figure 1 1 : Registered equally spaced direction vectors of filtered image 20

Figure 12: Registered non-equally spaced direction vectors of filtered image 20

Figure 13: Error vs. reject plot for Volume 1 ofNIST Special Database 9 25

Figure 14: Error vs. reject plot for Volume 2 ofNIST Special Database 9 26

Figure 15a: Example of misclassified double loop whorl with marked registration point. ... 28

Figure 15b: Feature vectors for fingerprint image in Figure 15a 28

Figure 1 6a: Example of misclassified central pocket whorl with marked registration point. . . 29

Figure 16b: Feature vectors for fingerprint image in Figure 16a 29

ii

List of Tables

Table 1 : Probability of occurrence of the five maj or class groups 6

Table 2: Classification results for NIST Special Database 9 Volumes 1 and 2 24

iii

Abstract

Two types of Fourier Transform based filters are presented and used to enhance fingerprint

images for use with a neural network fingerprint classification system developed at NIST [1][2].

With image enhancement the system is capable of achieving classification error rates of 8.65% with

10% rejects (average over volumes 1-5 ofNISTSpecial Database 9), a 2 percentage point improve-

ment in error rate versus using no fingerprint enhancement. Speed of the filters range from 2 to 9

seconds. Classification tests were performed with fingerprints from NIST Special Database 9 Vol-

umes 1 -5 [3] using ridge-valley based feature extraction, Karhunen Lo&ve transform, and a Proba-

bilistic Neural Network (PNN) classifier. Improvements made to the classification system used

include: a new segementor, use of non uniform feature vectors, and a faster version of the PNN
classifier. The faster PNN classifier results in an average of four times faster classification with no

change in resulting error rates. Also, the testing method used differs from past reports because no

rolling of the same print is allowed to appear in both the training and testing set used by the Neural

Network classifier.

Keywords: image enhancement, fast Fourier transform, fingerprint classification, Probabilistic

Neural Network, Karhunen Lo&ve transform, database, registration.

llntroduction

The current classification system used at NIST involves three main steps: pre-processing, fea-

ture extraction and classification. The current problem being presented is to accurately classify fin-

gerprints into five major class groupings: Arch, Left Loop, Right Loop, Tented Arch and Whorl

(see Figure la-e for example prints). A major problem that has occurred in trying to classify fin-

gerprints is extracting features from poor quality images. The features extracted from poor quality

images tend to have scattered ridge directions with low confidences. Poor ridge directions can

result in erroneous registration points or, since some of the classes like arch and tented arch may
have very slight differences, the classifier will have difficulty accurately separating the different

classes. This report concentrates on using three different Fourier Transform based image filters to

help reduce the noise present in the images. One hopes that by providing the feature extractor with

less noisy images that it will be able to extract less ambiguous features to send into the classifica-

tion stage resulting in more accurate classification. Results will show that the goal of extracting bet-

ter features and improving classification was accomplished.

Figure la: Example of arch pattern.

1

Figure lb: Example of left loop pattern.

Figure lc: Example of right loop pattern.

2

Figure Id: Example of tented arch pattern.

Figure le: Example of whorl pattern.

The images used, for training and testing, are from NIST Special Database 9 Volumes 1 and 2

[3], which are 832 X 768 8-bit gray scale images. All reports to this point have reported results

using NIST Special Database 4 [4]; there are very significant differences between the two data-

bases making comparison of results obtained from each database very difficult. Section 2 discusses

3

ill. 1 1 1
1

1

>mi | h 1 1

1

1 1 1 1

1

1 1

1

ii* > lit i
. i it />'/'./ ',/»# i I'll I Kii,i/>,i i / Mini nih li nr. mrlhotl nl Ni iimimy. 1 1 u

i ltd H hi i* I
<
|i hi 1 1

1 ;
• .1 1 1 ii i lilt ii

1

1

* 1 1

1

1 . i 1 1 1

1

1

. 1 .1 I ii 1

1

1 illlli it in > 1 1 iiiii * mill i |i him in> llniil r 1 1

1

1

1

1 hi
|

• i * VioilN h ‘I lilt I Mill

in . . I ili. 1

1

m • •
1

1

• i i • 1 1 iii •/'. i /.// I ><11 iil><i . I wi i» n • 1 1 I « ii 1 1 muuij? 1 1m I llit "n"
|

ii m In writ lino I

I . .i i. tin. I In i t i
.

, 1

1

> milt mil In < hum I < ii l< nl in I In 1

1

|

H ii I I In I

|
u Inlr. I m nil our voliihit ai <

«i . . I . t ili' 1 1 hi 1

1

1 1 1 1 . i H 1

1

.

1

1 1 it «il * i . 1 1 1

1

1 it ill 't 1
1 1 1 1 1 1 1 mi iim 1 1 1 1 1 1 1< It nil lit; n< I 1

1 ’nl I in vi nliow ii

lit. i • i .1 n i u 1

1

. m 1 1 . 1 1 1

1

• i > i K • ii i i I H 1 1 It ill it iii t 1 1 1 *i tilt I • I".) llinl Ot « ill n whi n llit I n nl 1 1 > 1

1

1 1 m
..I <i

|

* i 1 1 1 1 ii
|

>|
i. hi in (In 1 1 it 1 1

1

1 1 m t i (

i |

it i i ii 1

1

y v\ 1 1

1

1 n I ’i i » I ml 1 1

1

ml it I It mill N* I woi l>.) \ » i n un I in \ 1 1
1 y

.lilt lull in ih. 1 1 1 1 1 1 1 1 1 1
1 (i i it I |. Inn m l I- nt iw 1 1 iw 1 1 ii t >nt lit mil I m >1 • • m

1
1
nn • it n til In it

|

>oi It « I

m 1 1 1

1

i

.
|

'. ii l it 1 1 i • 1

1

1 1 1

1

|

m ii It 1 1 1 1

1

t mi I it i 1

1

|

m ii I • It ii 1 1 ii i • mi mi ,* it t I it mi .'i i t nil hi i in i rnull n ol

ill 1 1

1

1 ul H III 'll • ul It Ml Inin ill 1 1 III 1 1 1

1 1

>1 1 •' t lilt III (| . lint | |l l ill It « lilt III III llll, lit Ii 1 1 1 It; I < U IN 1 1 It

I It III Hill (. I. I I I I .ll I II I t '. 1 1 III | 1 1 III lilt I III II In) I t l| II i III l t M 1

1 1

Mil llll’ I III I III t I . nl ll
|

>|
< I V I III.' llll

It it ill II lli i In llit iitiiijii ft

Kl" |..

I

ill. nl 1 1 mill '
'

' (. Ilium. 1 nilhllll llllllli Hill illllOlllllft ol wlllll I XU KfJIOIIIItl r.|*nt t

n hit 1 1 nil I \ llll 1 1 u I

I
>l nt • i llr I llllt Hilt I t Ini I It i| I It l| > t I ll 1

1

h ill It Ml ,* it ti lilt llltll lOll. UN t It M I llll 1 1

in \ \ n i .1 In nhhtiu lilt In I • I IM) m . 1 ion ol lilt oi m mill lilltim ItMiini hy (In it n(

. t| lli. . Ih ilh u l n mi \ li in » in 1

1

nl I \ u i t I it mi ol ' I X I.S(hr. ii -t il Ii m t t mii| tnlilnlih \\ till t in 1

1

nl

ul t HI n Inn Hill I In lit 1

1
• It .lilt I I niU| Mil III It Ml Illlli

Ih. m l I.
|

• r lllh i inr nl lit. Ihim
1

1

m ml iuidm wliii li iv tin iim tl iii Nm Iihii I An |U t \ i

mi l\ luh <1 lli. !• in llit. • .llll. i. nl llll. i llml w ill hi u
|

•
|

*li. .I In (lit niiiiin .hid In. h hilt i iim n

ill. I I 1 I nm i. i n III I m III h • III I I I Ml \ il I I ht illlli,lit ml n I III I It t |llt III Y t loilldlU hi I Olt d| *| 'I \ nm ll I

I. t mu I I lit hi I hli. i |M.i. . nt lli. linn,in in nh . • linn mill it . Ollntiili In lh« hlh it .1 un im

I I nm l lit i ..linn lit. t ll lit i (u t > I i I It I lim
(

't t i d 1 1 \ t *1 It lilt 1 1 1 1 1 tin I. . n ll It ll li I It I I Ih undm hr. . I

mi .It nn. t mu nl ul inn I to \ . i. o It n. w nn nr. hit . tl tMl » n. ll ol it Uhl (ion tin. I (lit n lit onnh lit I ill.

llll. n .I nihtii. limn llu n nil. iilulimi iimmon

\l l. i (ill. i ntr llu im H in i I. nil \ (ni I. illlli i i •> 1 1 lit I it tn I In t ill n ill lin (llOi 1 ht iito imm I thn

. II v. . I in ... I inn '
i ll i it In \ lilt \ I. nlill • t i h dt (Ol lilt h illlllt > slid* (ni |MO\ hit n llltMt tit hill

in nil) mm him hi . i . .1 (lit iim.
1

1

>i mi (Mull in him n. h n .on mill .1. hr h\ d I low itm it lon i with

.III. . limr in ill. . HU I It lilt . S|'t nn. ol I. ii.lr. tluln lit ill (lit . .Im n nl lit. lilhlOt \l (hr, n(;im

llu 1 1. Im . lit t » in'll' n . il ni. nliii.l I 'ii; in i

1

ilu »\\ iu . Mini) »h ol » » oi . lo» iilion lotliul h\ » t c

r.imluMi I - . i i n nt

u

mi r uu ,1 Ir iuh\i llu . m . n(. n. h (inu. i |M niMt» m . tMUilltui |U>uil itiul lu l|'

» . . In. . . h (

1

1 i % u« t mu . In. .. I h\ . . nt. ni m i i h. (I ttiu i (m ml tl « lt((« n nt In. ill unm llu mil) nil ol

ilu I. nm * . un. in hi m i it n tU SIO i ulm 1 1 In t In Mr r i. .In. . .1 in i in in It in ill It i n. (o(ui|>nl Ini

urn h\ (h i . il. nhtl hli! ilu * o\ ii nnn t iihih i s . *1 (In h uume . l (. dlnn \ . im . nml iln n \, mhnr
ilu (* i ill* ij 1 U . im nluili I it Mt .*(tin » t*\ u him . tit Ul t s 1 1 lit n I tilt .1 tin nm I INI’ \i l\ t onl un \

|
> p in

l hdllllUltll lt»t\. V In l ' lltiunloiui llu In l (t tlfltM III r d itilllt UlOtUlltlN IVtllltlUC (irtUStotllt

>\ III. 1 1 III.. llu h 10 i i.l. . ,hn « In Ml-. I»»i , tn h nit dm tUU I (M t*, lilt » n d|»|M OMIUdlt l\ l '0 (t illin n (oi

u. . d- . m|uu n* tin Nt in dl N, l\\ tM K » hr n|(h i \iumIu i tr . (til I. uun ol (In Kl (i uunlot ttt un (hiKl

r. tlutl (In (» ill tin tin t ml. , ,1 m onl. i ol ,1. « n r uir \ u run , no i(r. \uil|'lt i,» nn, tow » i h .Kim n

(lldil rtn d. Ktrtll\ (OIIHil h\ t it . mm, tin (u nl i It'dliinvn

The. filial Mage of the ‘;y?;frm I’, clavnficafion I'oi elavnfje ation pill poaer, flir | >t iinni y * lav, ol

each pi Jilt 7/a-, i i?,ed and no way,hi war. given lot any lefncnced * lav,rr (at tin*. Iimr Aha, all o ai

j
)i m Vi war. div.ai ded horn tin data-, « I a*, d win not cle ai liow to handle the -a pi mb, I hr » I a .*>.*.

1 1 1
r i

ur.ed I <n tlm icpojf r. a I'/ oha In 1 j?;Iic Neural Network
|
V || I '

|
ar, drv i died m ' >n t ion 0 I >m mg * la-,

-.ihcafion the // /nmii pi obnlnlilir\ of ear li olav» ao applied to thr output ae tivahonr, giving moo
weight to cla‘>‘>e‘i that have a mole common ofeuiinio in a nalnial dr.li ilailion /\h,o. a "

I net

implementation of I'f IN r. nv.d v/lnch leduccr, (lie compulation Imir hy apj/i oxnnale ly a ha loi ol

4 v//fh no change m cla-.'.iljcation aeeuiaey Thr method faker, advantage <,l the V I . fratuir •

< t h* my
moidei ol dccfcnr ;mg yammer to limit the calculation time

T Ii* Je-jjlt*, of the expeinnenf-i pei foi med an given in 'a ehon H along v/ilh f lie me llioda n:.< d

foi ->coi mg and i eject mg the fingeipimt-. (Jnlikf po vion-. 7/ oik mpoi fed, tla r»ooi mg doe not n.«

tin. // /ft lor 1 fji ohahjljtie*. v/hen v.01 mg I /eonme aft' 1 1

«
jeolmg a ee 1 tain mini he 1 of pi mtr. it ma y l/e

inconeef. t
a*.Mime the clav. di‘,ti 1 hut join air -.till the vune At fhn point flirie n not mi fin if nl < lata

to e.-.timat» tin*, clav* di'.t! jhijf join aftei f.e ; tain l« /eh. of n jeoHon

I'lguo. > h./ampje of a coo location found hy legr.l/ ahon

2 Experimental Fingerprint Database

To date most fingerprint classification results reported in NIST work were performed using

NIST Special Database 4 (SD4). The images used in this report for training and testing purposes

were taken from NIST Special Database 9 Volumes 1-5 (SD9). SD9 images are 8 bit per pixel gray

scale images of mated fingerprint card pairs (270 card pairs per volume). This means the finger-

prints are matched at the card level, and not every individual fingerprint from mated cards will nec-

essarily have the same exact class. In contrast, SD4 was setup so that all matched fingerprints had

the same class label. Every fingerprint in SD9 has a National Crime Information Center (NCIC) [6]

class label assigned by classification experts. These assigned NCIC classes were converted to one

of the following five major groups: Arch, Left Loop, Right Loop, Tented Arch and Whorl for clas-

sification purposes.

The most obvious difference between the two databases is that SD4 contains an equal number

of fingerprints from the five major classes where as SD9 was randomly selected from current FBI

work so that it approximated a natural distribution of the fingerprint classes. The “natural” proba-

bility of occurrence for each of the five major classes is shown in Table 1. These probabilities were

calculated from a sample of fingerprint classes containing approximately 222 million fingerprint

classes. Also shown in table 1 are the exact class distributions of volumes 1 and 2 of SD9. The vari-

ations between the exact and natural distributions are accounted for by weighting the output acti-

vations of the PNN classifier with the probabilities for each class (see Section 6).

Class “Natural” Volume 1 Volume 2

A 0.037 0.067 0.038

L 0.338 0.306 0.316

R 0.317 0.311 0.309

T 0.029 0.041 0.048

W 0.279 0.275 0.289

Table 1: Probability of occurrence of the five major class groups.

The random collection of data from current FBI work also results in a lower quality of images,

although it is a more realistic sample of the classification work being done by humans. The quality

is lower because the “s” rollings are from current search cards sent to the FBI which in most cases

are of lower quality than the permanent file cards. The prints used in SD4 were taken from the per-

manent files of the FBI in which case if multiple cards have been collected on one individual the

better quality cards are stored in the permanent file.

There was also a significant difference in the method used to collect the data for SD4 and SD9.

In SD4 each image was scanned individually and some “eyeball” registration was done to center

the image in the area being scanned as well as rotating the image into the upright position. SD9 was

collected by first scanning all ten prints on a card into one large image (4096 X 1536 pixels) and

then segmenting the individual images. The images were segmented at the same point for every

card, so there was no “eyeball” registration or orientation correction occurring in SD9.

6

Taking all the factors of quality, registration, and segmentation into account, SD9 is a more

realistic method of evaluating a complete classification system, where as SD4 is more useful in

evaluating a simple feature extraction routine and classifier. The use of SD9 for evaluating the per-

formance of the entire system should provide more realistic results than using SD4.

3 Image Segmenting

The fingerprints from NIST Special Database 9, present a new problem to the classification sys-

tem because the images are 832 by 768 pixels in dimensions and contain significant amounts of

white space in the image (see Figure 3). The segmentation routine described below is used to seg-

ment the fingerprint data for use by the rest of the classification system.

The segmentation routine takes as its input an original fingerprint image, which is an 8-bit gray

raster of dimensions 832 pixels (width) by 768 pixels (height); its output is a smaller 8-bit raster,

5 12 by 480 in size, produced by snipping from the input raster a rectangular region, with the sides

of the snipped rectangle not necessarily parallel to the corresponding sides of the original raster.

Snipping out a smaller rectangle is helpful because it reduces the amount of data that has to undergo

the compute-intensive filtering process, and also because it produces a raster whose size is well

matched to our implementation of Wegstein’s R92 registration routine. The segmentor also

attempts to return fingerprints which are rotated to an upright position.

7

Figure 3: Original raster of image to be segmented.

The segmentor decides which rectangular region of the raster to snip out by performing the fol-

lowing steps (Figure 3 is an original fingerprint raster, and Figure 4a-d illustrate the processing as

applied to this fingerprint):

1) Produce a 104x96-pixel binary raster whose pixels indicate which 8x8-pixel blocks of the

original raster are considered to be “foreground”:

Find minimum pixel value for each block as well as the global minimum
and maximum pixel values.

For (several factor values between 0.0 and 1.0)

{

threshold = globaljnin + factor * {globaljnax - globaljniri)

Set to “true” each pixel of candidate-foreground map whose correspond-

ing pixel of the array of block minima is <= threshold and count resulting

8

candidate-foreground pixels.

Count the transitions between the true and false values in the candidate-

foreground, counting along all rows and also along all columns. Keep

track of minimum number of transitions.

}

Among those candidate-foregrounds whose number of true pixels is within

specified limits, pick the one with the fewest transitions. (If threshold is

too low, there tend to be many holes in what should be solid blocks of fore-

ground; if the threshold is too high, there tend to be many spots on what

should be solid background. If threshold is about right, there are few holes

and spots, and hence relatively few transitions.

Figure 4a shows the foreground produced from the fingerprint of figure 3.

Figure 4a: Foreground of Figure 3.

2) Clean up and center the foreground-map:

Perform three erosions on foreground-map. Each erosion consists of

changing to false each true pixel that is next to a false pixel.

Find the connected sets (“blobs”) of true pixels, and change to false all pix-

els except those belonging to the largest blob.

Change to true any pixel that has true pixels both to its left and to its right,

or both above and below itself.

Calculate centroid of foreground-map and translate foreground-map mov-

ing its centroid to the middle pixel position of its raster.

Figure 4b shows the result of cleaning up and centering the foreground.

Figure 4b: Foreground of Figure 3, “cleaned” and centered.

3) Find the left, top, and right edges of the foreground:

Move upward from middle row and find left-most true pixel of each row,

but stop when horizontal difference between current row’s and previous

9

row’s left-most true pixel is > 1.

Repeat process, moving downward from middle row.

These two processes find the left edge of the foreground. The limit of one

on the horizontal change prevents the supposed edge from going around a

corner of the foreground.

Similarly, find top and right edges.

The three lines in the center of Figure 4c are the edges of the foreground.

m
Figure 4c: Edge detection of Figure 3.

4) Fit straight lines to foreground edges:

For each of the three edges, use linear regression to produce a straight line

that most closely fits the points comprising the edge.

Naturally, the left and right edges are fitted to lines of the form x = m * y
+ b.

The top edge is fitted to a line of the form y = m * x + b.

The straight lines in the right part of Figure 4c are the fitted lines.

5) Calculate overall slope of foreground:

Calculate the average of the slopes of the left edge, the right edge, and a

line perpendicular to the top edge (negative the slope of the fitted line).

This average slope is the overall slope of the foreground.

6) Find top of foreground:

Make a histogram from the rows of a rectangle whose width corresponds

to the output raster width, whose height is large, whose center is at the cen-

ter of the foreground’s raster, and which is rotated so that its sides have the

same slope as the foreground.

Move downward in the histogram, stopping at the first row which both fits

entirely into the foreground raster and has a threshold number of true pix-

els. (Note that the resulting foreground top is not generally the same as the

top edge found earlier, because its slope is the average of the slopes corre-

sponding to the three edges found, rather than being the slope of just the

top edge.)

7) Finish deciding the snipping parameters:

The overall slope computed earlier determines the angle of snipping which

nullifies any rotation of the fingerprint.

10

As for the position of snipping, that is chosen so that the top of the snipped

rectangle corresponds to the foreground top found in the preceding step.

(Having the snipped rectangle hang from the top of the foreground, instead

of centering it on the foreground center, produces a bias in favor of the last

joint of the finger, which is the only interesting part of the finger as far as

classification is concerned.)

The box superimposed on the foreground, in the left part of Figure 4c,

shows the snipping rectangle that has been decided on.

8) Snip smaller raster from the original raster:

Produce the output raster by copying the appropriate pixels of the input

raster, applying the translation and rotation that correspond to the snipping

parameters that were computed.

Figure 4d shows the output raster snipped from the input raster. Its edges

correspond to the box in the left part of Figure 4c.

Figure 4d: Segmented image of Figure 3.

11

4 Fingerprint Image Enhancement

This section describes the two filtering techniques used to enhance the quality of the fingerprint

images. Both filter techniques use the fast Fourier transform (FFT) to compute the discrete Fourier

transform (DFT) when filtering the image. The difference in the methods is that the first filter oper-

ates on 32 X 32 pixel sub-regions of the image and the second filter acts globally over the entire

image. Also, the second filter enhances the image in distinct directions where as the first just does

simple noise reduction. Figure 5 shows the original unfiltered fingerprint raster that has been

through the segmenting process.

Figure 5: Original image f0000048.pct.

4.1 Localized FFT Fingerprint Filter

The first filter used to improve the quality of the fingerprint images is based on the algorithm

in [7]. This filter processes the image in 32 X 32 pixels, beginning in the upper left hand comer of

the image. After processing a tile it shifts right 24 pixels and to obtain the next 32 X 32 tile, result-

ing in the first 8 columns of the tile being common with the last 8 columns of the previous tile. After

reaching the right side of the image the filter shifts down 24 pixels, resulting in the 8 rows of com-

mon data with vertically adjacent tiles, and restarts at the left side of the image. Processing contin-

ues until reaching the bottom right side of the image. The common data between the horizontally

and vertically adjacent tiles helps reduce the artifacts (visible in Figure 6) created by processing

the image in tiles.

12

Each tile is treated as a matrix of real numbers. The first step in filtering a tile is to compute the

two-dimensional DFT, defined as follows (B set to zeros):

32 32

E I
m = 1 n = 1

mn +iBmn) eXP(-2Ki (

0-1)(«-!) (*-l)(n-l)

32 32
)) (1)

The FFT is used, rather than using formula (1) directiy. The filtering of some of the high and low

spatial frequencies is done using a mask to set these frequencies to zero. Next the power spectrum

P of the FFT is computed:

— y2 + V2" A
jk
+ 1

jk (2)

The elements of the power spectrum (Pjk) are then raised to a power a (0.3 was used) and multi-

plied by the FFT elements X + zY producing the new elements U + zV:

Jp
II

(3)

Ujk ~ Qjk^jk (4)

V
jk

=
QjkYjk (5)

Finally, the inverse transform of U + zV is computed, and its real part becomes the filtered die. In

reconstructing the image the filter keeps only the center 24 X 24 pixels, accounting for the 8 pixel

overlap, and discards the 4 outer edge rows/columns of the tile. The multiplication of the FFT ele-

ments by a power of the power spectrum has the effect of amplifying the dominant frequencies in

the tile. Presumably, the dominant frequencies of the tile are those corresponding to the ridges

thereby increasing the ratio of ridge information to non-ridge noise and adapting to variations in

ridge frequency from one tile to the next. Figure 6 is a result of applying this filter to the raster of

Figure 5.

r

13

Figure 6: Image filtered using localized FFT filter.

4.2 Directional FFT Filter

The directional FFT filter was designed to do better filtering with respect to the ridge flow in

the fingerprint image [8]. The filter uses a predefined orientation mask designed to filter the finger-

print image in a primary ridge direction while preserving the detail of the minutiae. Another advan-

tage of the filter is that it does not produce artifacts as seen with the localized FFT filter.

The filter processes the image by first calculating the FFT of the image. Next, the directional

mask is applied by rotating it to ten distinct orientations, creating ten different images with the

ridge flow enhanced in each of ten distinct directions. Then the inverse FFT for each direction fil-

tered image is computed (see Figure 7a). The pixel orientations of the filtered image are determined

by comparing the ten direction filtered images, pixel by pixel, and recording the direction with the

largest squared magnitude at each pixel as the pixel orientation in the filtered image. A histogram

smoothing function is applied to the recorded pixel orientations to help smooth directions in local

neighborhoods.The filtered image is then reconstructed using the recorded pixel directions to deter-

mine from which direction filtered image to select each pixel value. Figure 7b shows the results of

filtering the fingerprint in Figure 5 with this method.

After some experimentation it was determined that using ten orientations was probably not nec-

essary, so adjustments were made to the kernel mask and a second version used only six orienta-

tions (see Figure 8a and Figure 8b).

14

Figure 7 a: Orientation images for direction filter version 1.

15

Figure 7b: Image filtered using version 1 of the directional filter (ten orientation masks).

Figure 8a: Orientation images for direction filter version2.

16

Figure 8b: Image filtered using version 2 of the directional filter (six orientation masks).

17

5 Feature Extraction

An earlier version of the direction finder, based on the ridge-valley fingerprint binarizer

described in [9], produced a grid of directions spaced 16 pixels apart horizontally and vertically,

for a total of 840 (28 X 30) vectors as shown in Figure 9. The ridge directions were then registered

by shifting the fingerprint “core” to a location which is the median core location from a larger sam-

ple of handmarked core data. Wegsteins’ [10] routine was used to find the core location for each

fingerprint. Figure 10 shows an example of a incorrect registration point found before filtering and

Figure 11 shows that after filtering a correct registration point was found.

The current version of the direction finder [11] produces better classification results by using

the same number of vectors, but arranged in a fixed unequally spaced pattern which concentrates

the vectors in certain areas at the expense of less important regions (see Figure 12).The location of

the dense ridge directions was determined by hand marking the location of cores and deltas in a

large sample of images and then adding up the number of cores and deltas located in each 32 X 32

grid of the image. A mapping of the most dense core and delta regions was used to determine where

the dense ridge regions should be located. Each 32 X 32 pixel tile of the raster gets either 1, 4, or

16 direction vectors. First, a grid is produced with the vectors spaced every 8 pixels (but still using

16X16 pixel averaging windows); this grid has 16 vectors per tile. Grids with 4 vectors/tile and 1

vector/tile are produced from this original grid by two averaging steps. Then, some tiles receive

their vectors from the coarse grid, some from the medium grid, and some from the fine grid, accord-

ing to a pattern produced as follows. Let the number of tiles that receive 1, 4, and 16 vectors be nj,

n4 ,
and n^g. There are 15 X 16 = 240 tiles, so nj + n4 + n^g = 240. The total number of vectors is

fixed at 840 for comparability with the earlier version, so nj + 4n4 + 16njg = 840. Using these two

equations in three variables, integer values of n^g with 0 <= n^g <= 40 produce nj and n4 values

that are non-negative integers. Meaningful values for the three variables were produced by simply

picking n^g values and solving for the other two variables, since there is not a unique meaningful

solution. Through experimentation it was determined that the best classification error rate was

obtained using a nig value of 10.

The 840 output vectors were then reduced, using a Karhunen Lo&ve (KL) [12] transform, to

approximately 120 features for use in with the Neural Network classifier. The dimensionality

reduction was accomplished by first calculating the covariance matrix of the training data and

determining the principle eigenfunction set using EISPACK routines. The KL transform uses the

output vectors along with the mean output vector (calculated from the training data) and principle

eigenfunctions to produce the reduced feature set for each image. In the transform, the mean output

vector is first subtracted from the output vector and then the result is multiplied by a matrix con-

taining the principle eigenvectors. Since the KL features are ranked in order of decreasing variance

it is simple to reduce the number of features used by selecting the first n features. Through testing

it was determined that no difference in error rate was seen when using more than 96 input features.

18

Figure 9: Equally spaced direction vectors of non-filtered image.

Figure 10: Registered equally spaced direction vectors of non-filtered image.

19

Figure 11: Registered equally spaced direction vectors of filtered image.

Figure 12: Registered non-equally spaced direction vectors of filtered image.

20

6 PNN Classifier

The classification algorithm used was a Probabilistic Neural Network (PNN) [2] [13]. The

unknowns are classified by summing the values of the kernel functions of the prototypes for each

output class i, and then weighting these “output activations”, D*(y), by a compensating factor

involving the a priori probability of each output class, p(i) and the number of examples for each

class, Mj. The activations are then normalized and the highest activation is selected as the hypoth-

esized class. The kernel function used is a radially symmetric Gaussian kernel parameterized by a

smoothing variable a that was optimized by trial and error.

D
i (y)

= P
-^r Z exP (x

j

0>
> y) > W

th
where the euclidean distance of the unknown y to the j prototype Xj is:

n n

d2 (x}‘\y) = £(y(t)-J«:)!i)

)

2
= (7)

k =

1

k =

1

A modification was made to the classifier which decreased the time of classification by a factor

of 4 with no cost to classification accuracy. The method takes advantage of the KL features being

ranked in order of decreasing variance by applying a threshold factor which keeps only those pro-

totypes which make a significant contribution to the computation of the discriminant function

shown above. The exponential in the discriminant function results in the closer prototypes having

by far the most significant contribution to the summation. Taking this into account, the function

can be approximated by discarding those prototypes with exponential terms contributing less than

10"^ times the largest term. Meaning, a prototype of any given class, xj®, can be deleted from its

discriminant summation if:

exP (-~d2
(xj°,y)) < 10

Xexp(-~^d2
(x ,y)) (8)

2

a

2 1 2a2

where xc is the closest prototype without regard to class.

By taking logs and changing sign this condition can be expressed more usefully in the squared

distance domain. If we define the set of eligible prototypes of class i as

S
(i)

= {j\d
2
(xf\y) <> 2a2Xln 10 + d2 (xc , y) } (9)

21

then the discriminant summation of (6) can be abbreviated,

D
t (y)

= V exP(—Kd2

(xJ‘\y)) (10)

so that only those prototypes whose squared distance is less than or equal to the distance of the clos-

est prototype, xc , plus the factor controlled by X as defined in (9). Note that xc is the closest proto-

type without regard to class. The error associated with this approximation is controlled by setting

X to a sufficiently large value. The value used in these experiments was X = 4, insuring error rates

did not change between traditional PNN and the optimized PNN.

One advantage to this calculation is that an outer limit distance is determined by the current

closest prototype’s squared distance and the 2a2AMO factor. If a new prototype becomes the clos-

est, the threshold criteria is reapplied and the set is redefined. The main execution time is saved by

the fact that as soon as any distance summation (7) is larger than the criteria set by 2a2AMO in (4),

the calculation can be stopped with k < n and the prototype discarded. This becomes very useful

with the KL transform because the expected value for the contribution of a given feature is propor-

tional to the variance of that feature. Formally, over all prototypes, Xj, the expected value of d(k)
2

in equation (7) for a given unknown y is:

E(dVc) 2
) = E(Xj (k) 2

) -2E(xj(k)y(k)) +E(y(k) 2
) (11)

Then, by substituting in the sample estimates:

i
N

i
N

E(d{k) 2
) *jjYi

Xj{k) 2 -2y(k)^x
j
(k) + y(k) 2

(12)

j= 1 j= 1

For KL features the mean value of x(k) is zero, so the expression reduces to:

E (d (k)
2
) = Var (* (k)) + y (k)

2
(13)

and if the unknown feature vectors are identically distributed as the prototypes then:

E (d(k) 2
) s2Var(x(k)) (14)

Since the KL transform ranks the features in order of decreasing variance, the first few features

contribute most to the distance calculation. Normally, only 4 or 5 features are used in the distance

calculation before the distance to the prototype exceeds the deletion criteria (2cr
2
Ai«10) and the cal-

culation can be stopped.

22

Each filter process was tested twice, the first time using the f rollings from volume 1 as the pro-

totype set and the s rollings of volume 2 as the test set and the second time using the f rollings of

volume 2 as the prototypes and the s prints of volume 1 as the testing. This testing method insured

that no other rollings of a print in the prototype set occurred in the testing set making the results

using the PNN classifier more realistic. It also checked for some consistency in the results over the

two sets of data.

7 Method of Rejection

After selecting the class based on the highest output activation as described in Section 6, the

highest activation is used a confidence measure to determine wether or not to reject the fingerprint

as unclassifiable. Rejecting fingerprints was done by comparing a threshold value to the highest

output activation and any output activation below the confidence threshold level is rejected as

unclassifiable. The reason for doing this is to discard any prints that appear ambiguous to the clas-

sifier resulting in a low output activation.

8 Results

8.1 Accuracy

As is shown in Table 2 an improvement of approximately 2 percentage points was seen in the

overall classification error rate when filtering was applied to the fingerprint data. No one filtering

method seemed to do significantly better than the other suggesting that the classifier is not

extremely sensitive to the technique used to reduce noise in the image. Since most of the prints mis-

classified at high reject levels are not of bad quality one would not expect more filtering to result

in better error rates at high levels of reject. Improved filtering could still help reduce error rates at

lower reject levels. Figure 13 and Figure 14 show plots of the error rate versus the percent reject

for volumes 1 and 2 of NIST Special Database 9.

The scoring method used to present these results was a simple method of dividing the number

of wrong prints by the number of accepted prints shown in the equation below. This differs from

some previous work reported which used the a priori probabilities to calculate the error rates [2]

.

Using the a priori probabilities after rejecting some of the prints may actually be invalid because

it assumes that after rejecting a percentage of the prints the probability of occurrence for each class

has not changed. This may actually be true but at this point we do not have the data to compute

these probabilities.

E ; = 100.0 x f-1 (15)

8.2 Speed

There was a significant difference seen in the time required to filter images with the three dif-

ferent filters. The fastest time seen for the localized FFT filter was approximately 2 seconds per

image when run on a DAP 5 10C 1
massively parallel architecture. The fastest times for the direc-

23

tional FFT filters were approximately 9 seconds per image (version 1) and 5 seconds per image

(version 2) when run on a i860XP 50 MHz processing board
1

. The execution times on a SUN spare

2 workstation
1 were approximately 30 seconds (localized FFT filter), 5 minutes (version 1 direc-

tional filter) and 3 1/2 minutes (version 2 directional filter).

Image Enhancement

Equally Spaced Grids

No Filter or Registratioi

Registered

Non-Equally Spaced Grids

Registered

Localized FFT Filter

Directional ITT filter 1

Directional FFT filter 2

Volume 1 Prototypes

Volume 2 Testing

Volume 2 Prototypes

Volume 1 Testing

% error

% error with

10% rejects a % error

% error with

10% rejects a

18.91 14.68 2.19 21.33 16.67 2.10

17.05 12.81 2.01 18.39 13.56 1.83

15.63 11.32 2.18 15.79 11.12 1.93

13.73 9.33 2.47 13.23 8.85 2.54

14.89 10.45 2.23 14.04 9.31 2.21

14.81 10.66 2.43 14.37 10.01 2.83

Table 2: Classification results for NIST Special Database 9 Volumes 1 and 2.

1 . Certain commercial equipment is identified in order to adequately describe the subject matter of this work.

In no case does such identification imply recommendation or endorsement by the National Institute of Stan-

dards and Technology, nor does it imply that the equipment identified is necessarily the best available for the

purpose.

24

Percent

of

Error

Error vs. Reject when Testing s Print of Volume 1 NIST Special Database 9

Use f Prints of Volume 2 as Prototype Set

Figure 13: Error vs. reject plot for Volume 1 of NIST Special Database 9.

25

Percent

of

Error

Error vs. Reject when Testing s Print of Volume 2 NIST Special Database 9

Use f Prints of Volume 1 as Prototype Set

Figure 14: Error vs. reject plot for Volume 2 of NIST Special Database 9.

26

9 Conclusions

The first point that needs to be made about the results are that they can not be compared to pre-

vious results reported using NIST Special Database 4 for two main reasons. First the data sets were

collected using different techniques which affected the quality and orientations of the images. Sec-

ond the test performed in this report do not use the first rollings of a set of prints as the training set

and the second rollings of the same prints as the testing set as was done in previous tests. Test have

shown that using different rollings of a print in the prototype and testing sets result in significantly

better error rates (3-4%) versus using different prototype and testing data with a PNN classifier. For

this reason, all tests in this report are done using a set of prototypes that does not contain any roll-

ings of the prints in the testing set. This testing method produces more realistic results since one

can not always expect a rolling of a fingerprint in the testing data to appear in the prototype data.

The use of filtering accomplished the main goal of providing better features the classifier as

shown by improved registration and ridge flow data (Figure 9-Figure 12) and improved error rates

(Table 2). The improvement from the feature vectors in Figure 9 to those in Figure 11 is shown by

two facts. First the feature vectors have smoother flow from one orientation vector to the next. Sec-

ond the length of the lines in the figures shows the amount of confidence that the orientation is cor-

rect, the confidences are clearly better in Figure 11. There was also an improvement of

approximately 2% consistently observed for rejection rates up to 50%. Currently our system uses

the localized FFT filter because it is more than twice as fast as the next fastest filter and provides

the best error rates.

After carefully observing the results it was also determined that further filtering will result in

very little gain in overall error rate with the current system. In a separate test a printout was made

of all the fingerprints incorrectly classified after rejecting 35% of the classified prints. The printouts

showed that approximately 45% were double loop whorls with accurate ridge flow data and correct

registration points (as defined by the current algorithm). The problem is that the classifier is having

trouble distinguishing between certain double loop whorls (Figure 15a and Figure 15b show an

example print with registration point and corresponding ridge features) and loops. The same prob-

lem was occurring approximately 15% of the time with central pocket whorls that had a small num-

ber of ridges completely circling the center core (see Figure 16a and Figure 16b). The classifier

also had difficulty with tented arches confusing them with loops and arches (10% of the errors).

Taking into account these three cases approximately 70% of the error occurring needs to be solved

by some other method than improving image enhancement.

27

Figure 15a: Example of misclassified double loop whorl with marked registration point.

Figure 15b: Feature vectors for fingerprint image in Figure 15a.

28

Figure 16a: Example of misclassified central pocket whorl with marked registration point.

Figure 16b: Feature vectors for fingerprint image in Figure 16a.

29

References

[1] C.L. Wilson, G.T. Candela, P.J. Grother, C.I. Watson, and R.A. Wilkinson. Massively Parallel

Neural Network Fingerprint Classification System. Technical Report NISTIR 4880, National

Institute ofStandards and Technology

,

July 1992.

[2] G. T. Candela, R. Chellappa. Comparative Performance of Classification Methods for Finger-

prints. Technical Report NISTIR 5163, National Institute ofStandards and Technology, April

1993.

[3] C.I. Watson. Mated Fingerprint Card Pairs. Technical Report Special Database 9, MFCP,
National Institute ofStandards and Technology, February 1993.

[4] C. I. Watson, C. L. Wilson, Fingerprint Database, National Institute ofStandards and Technol-

ogy, Special Database 4, FIGS, March 1992.

[5] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, C. B. Moler,

Matrix System Routines - EISPACK Guide, Springer-Verlag, 1976.

[6] The Science ofFingerprints. U. S. Department of Justice, Washington, DC, 1984.

[7] Automated classification system reader project (ACS). Technical report, DeLaRue Printrak

Inc., February 1985.

[8] D. Wasson, Masters Thesis University of Maryland, 1994.

[9] R. M. Stock and C. W. Swonger. Development and evaluation of a reader of fingerprint minu-

tiae. Cornell Aeronautical Laboratory, Technical Report CAL No. XM-2478-X- 1:13-17, 1969.

[10] J. H. Wegstein. An automated fingerprint identification system. National Institute ofStandards

and Technology, NBS Special Publication 500-89, February 1982.

[11] C. L. Wilson, G. T. Candela, and C. I. Watson. Neural network fingerprint classification. Jour-

nal ofArtificial Neural Networks, 1992. to be published

[12] P. J. Grother. Karhunen Lo&ve feature extraction for neural handwritten character recognition.

In Proceedings: Applications ofArtificial Neural Networks III. Orlando, SPIE, April 1992.

[13] Donald F. Specht. Probabilistic neural networks. Neural Networks, 3(1): 109-118, 1990.

30

